skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ohm, Laurel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Abstract We consider a classical elastohydrodynamic model of an inextensible filament undergoing planar motion in R 3 . The hydrodynamics are described by resistive force theory, and the fibre elasticity is governed by Euler–Bernoulli beam theory. Our aim is twofold: (1) Serve as a starting point for developing the mathematical analysis of filament elastohydrodynamics, particularly the analytical treatment of an inextensibility constraint, and (2) As an application, prove conditions on internal fibre forcing that allow a free-ended filament to swim. Our analysis of fibre swimming speed is supplemented with a numerical optimization of the internal fibre forcing, as well as a novel numerical method for simulating an inextensible swimmer. 
    more » « less
  3. We consider the Saintillan–Shelley kinetic model of active rod-like particles in Stokes flow (Saintillan & Shelley, Phys. Rev. Lett. , vol. 100, issue 17, 2008 a , 178103; Saintillan & Shelley, Phys. Fluids , vol. 20, issue 12, 2008 b , 123304), for which the uniform isotropic suspension of pusher particles is known to be unstable in certain settings. Through weakly nonlinear analysis accompanied by numerical simulations, we determine exactly how the isotropic steady state loses stability in different parameter regimes. We study each of the various types of bifurcations admitted by the system, including both subcritical and supercritical Hopf and pitchfork bifurcations. Elucidating this system's behaviour near these bifurcations provides a theoretical means of comparing this model with other physical systems that transition to turbulence, and makes predictions about the nature of bifurcations in active suspensions that can be explored experimentally. 
    more » « less
  4. We study the inverse problem for the fractional Laplace equation with multiple nonlinear lower order terms. We show that the direct problem is well-posed and the inverse problem is uniquely solvable. More specifically, the unknown nonlinearities can be uniquely determined from exterior measurements under suitable settings. 
    more » « less
  5. We remark on the use of regularized Stokeslets in the slender body theory (SBT) approximation of Stokes flow about a thin fiber of radius ϵ>0. Denoting the regularization parameter by δ, we consider regularized SBT based on the most common regularized Stokeslet plus a regularized doublet correction. Given sufficiently smooth force data along the filament, we derive L∞ bounds for the difference between regularized SBT and its classical counterpart in terms of δ, ϵ, and the force data. We show that the regularized and classical expressions for the velocity of the filament itself differ by a term proportional to log(δ/ϵ); in particular, δ=ϵ is necessary to avoid an O(1) discrepancy between the theories. However, the flow at the surface of the fiber differs by an expression proportional to log(1+δ2/ϵ2), and any choice of δ∝ϵ will result in an O(1) discrepancy as ϵ→0. Consequently, the flow around a slender fiber due to regularized SBT does not converge to the solution of the well-posed slender body PDE which classical SBT is known to approximate. Numerics verify this O(1) discrepancy but also indicate that the difference may have little impact in practice. 
    more » « less
  6. We propose a novel integral model describing the motion of both flexible and rigid slender fibers in viscous flow and develop a numerical method for simulating dynamics of curved rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on (singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral operator is provably negative definite in a nonphysical idealized geometry, as expected from the partial differential equation theory. This is numerically verified in physically relevant geometries. We discuss the convergence and stability of a numerical method for solving the integral equation. The accuracy of the model and method is verified against known models for ellipsoids. Finally, we develop an algorithm for computing dynamics of rigid fibers with complex geometries in the case where the fiber density is much greater than that of the fluid, for example, in turbulent gas-fiber suspensions. 
    more » « less